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Perception and Control of Locomotion

John M. Flach

Wright State University

Abstract

Over the past four years we have been studying problems of control and
coordination with funds from AFOSR. Work over the first three years has been
reviewed in the final report for the original AFOSR award (Flach, 1996). This
report reviews work for the last year of the ASSERT grant. This work has
focused on perception and control of low altitude flight. Experimental work
from two synthetic task environments is described in this report. The first
environment involved descent to low altitude. The key independent variables
were speed of forward motion and optical texture (dot, grid, splay, depression).
Results showed an interaction between texture and speed. For textures that
contained depression information, the rate of approach to asymptote decreased
with increasing forward speed. This was not true for splay texture. These results
are consistent with previous experimental work and support the signal-to-noise
hypothesis (Flach, Hagen, & Larish, 1992). The second environment involved
collision avoidance. The key independent variables were speed of approach and
the climb dynamics. The results showed that subjects were sensitive to both the
dynamic constraints and uncertainties associated with action. Performance
curves approached the optimal performance boundaries in state space. The
buffer between the optimal boundary and the performance curves was
proportional to the variability of responses. These two studies illustrate an active
psychophysics paradigm that focuses on perceptual-motor coordination within
closed-loop control tasks. The results are consistent with the logic of optimal
control models that incorporate both dynamic constraints and uncertainty
(perceptual and motor noise) as critical components in the model of the human
operator.
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1.0 General Overview

This is a final report for an ASSERT grant which was an addendum to an
earlier AFOSR grant. A final report for the original award, titled
"Perception/Action: An Holistic Approach II," was submitted last year
(November 1995). That report summarizes the initial three year period of the
research. This report will discuss progress made over the last year.

1.1 General Framework
Our general approach to the problem of control of locomotion (and in

particular the control of low level flight has been characterized as "active
psychophysics" (Flach, 1990; Flach, 1993; Flach & Warren, 1995; Warren, 1988;
Warren & McMillan, 1984). This approach takes a holistic perspective on the
problem of controlling perception and action. Whereas, many psychophysical
programs depend on open-loop tasks so that the experimenter can have precise
control of stimulation, an active-psychophysical approach studies performance
in the context of closed-loop coordination tasks. In an active-psychophysical
paradigm the stimulus is under the control of the subject. In this paradigm the
pattern of stimulation varies as a function of the subject's actions within a
synthetic task environment. Instead of manipulating stimulation, the
experimenter sets constraints on the dynamics of action, the structure of
information (feedback), or performance objectives and costs (goals). These
constraints function as the independent variables. Performance is evaluated in
terms of time domain and frequency domain measures that have been
traditionally used to characterize the performance of control systems. In various
phases of the research these have included RMS error, correlated control power,
the asymptote and rate of approach to a fixed target, and RMS control velocity.
The active psychophysical approach is illustrated in Figure 1.

GO AL AMIlCONSTRAINTS -1- SlllF(LUS 10 IRNlA~N 0- CONSTRANxTS "

I FEEDBACKCOlTr RARTS

Figure 1. In studying coordination within a closed-loop system the experimenter
manipulates goal, action, and feedback constraints, rather than the stimulus. The
stimulus at any moment is a function of the responses of the subject.

This is a basic research program with the primary goal of discovering
fundamental properties of human perceptual-motor coordination. The active
psychophysical paradigm has evolved from our struggles to find an appropriate
balance between external and internal validity in our basic research program.
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We feel that this framework improves the external validity of our research
program over more traditional psychophysical approaches. It does this without
compromising the internal validity that is essential to basic research. We hope
that the basic questions that we ask within this approach will be representative of
the problems that humans face in natural environments (such as low altitude
flight). Further, we hope that the principles and answers that are discovered will
help to inform the design of effective human-machine systems.

2.0 The Control of Locomotion

Detailed reports of our studies on control of locomotion are contained in
two Masters Theses (Kelly, 1993; Garness, 1995) and in a paper that is in press in
the Journal of Experimental Psychology: Human Perception & Performance (Flach,
Warren, Garness, Stanard, & Kelly, In press). This work has also been described
in the final report for the original AFOSR award (Flach, 1995). Two experiments
will be summarized in this report. The first experiment examined approach to a
low altitude flight path as a function of optical texture and forward speed. The
second experiment examined collision avoidance as a function of the dynamic
flight capabilities of the vehicle.

2.1 How Low Can You Go?

Since Gibson, Olum, and Rosenblatt (1955) first described structural
properties of optic flow fields, numerous experimental programs have tried to
empirically validate the link between the geometry of the flow field and control
of action. Researchers such as Anderson (Anderson & Braunstein, 1985), Cutting
(1986), Owen (Owen & Warren, 1987), and Warren (Warren, Mestre, Blackwell, &
Morris, 1991) have utilized graphic computer displays to simulate and
manipulate the structure of optical flow fields and to measure the consequences
for perception and action. Warren and Wertheim (1990) summarize much of the
work in reference to the control of locomotion and Flach and Warren (1995)
reviews work related to control of low altitude flight. Our research, extends this
work to examine perception and control of altitude.

Our earlier report to AFOSR (Flach, 1995) provided detailed geometric
analyses of the optical flow field with respect to the altitude control problem.
That report also summarizes the experimental literature that has addressed the
problem of altitude control. This information is also available in numerous
published reports (Flach, Hagen, & Larish, 1992; Flach & Warren, 1995; Flach,
Warren, Garness, Stanard, & Kelly, In press). Our interest in this work was
motivated by a controversy over whether splay (the angle at which lines parallel
to the line of motion converge at the horizon) or depression angle (the angle of
texture elements below the horizon) provided the best information for
controlling altitude. Figure 2 shows displays that isolate these two sources of
optical information.
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GR D SPLAY DEPRESSIGJ

Figure 2. Three types of ground textures that have been used to isolate the
components of optic flow associated with change of altitude.

Table 1: Source of Optical Activity

SIGNAL NOISE

TEXTURE Altitude Fore-aft Lateral

GRID -icosSsinS ij9jcos2 5 - Cos2s

S'(cos4sin3

DOT -( cosSsinS cos2 6 cos s

Jcos 6sin S

DEPRESSION cos (5ossin3 45 *} os 2 35
SL oz
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Based on our analysis of the literature and our previous experimental
work (see Flach, 1995), we hypothesized that the relative utility of these texture
elements might depend on the motion context. Previous research that had
shown superior performance with splay texture had generally been conducted in
the context of fixed wing vehicles and had involved high speed forward motion.
Research that had shown superior performance with depression texture had
been done in the context of rotorcraft and had involved low levels of or no
forward motion. Our "signal-to-noise" hypothesis suggested that the ability to
detect optical changes due to altitude change might depend on the levels of
optical activity resulting from other motions (e.g., forward movement). Table 1
shows how various motions would effect the levels of optical activity. Signal
refers to optical activity that specifies change in altitude. Noise refers to optical
activity that is not a function of altitude change. Note particularly, that forward
motion is a source of noise for depression texture, but not for splay texture.

2.1.1 The synthetic task environment
Our previous experimental work (e.g., Flach, 1995) found support for the

signal-to-noise hypothesis in the context of an altitude tracking task where
subjects were required to maintain a constant altitude resisting disturbances due
to quasi-random wind gusts. Here we will summarize a study using an
alternative task. For the current task, the subjects were to perform a controlled
approach to low altitude from 400 ft. They were instructed to attain an altitude
as low as possible as quickly as possible, avoiding collision with the ground. The
simulated vehicle had simple first order dynamics and control was restricted to
altitude. The independent variables were texture (Grid, Dot, Splay, or
Depression) and speed (0, 35, or 70 ft/s). Texture was manipulated within
subjects and speed was a between subjects factor. Dependent measures included
the rate of approach and the final asymptote level. The rate of approach and
asymptote level were derived from fits of the time histories to an exponential
model of approach. This fit is illustrated in Figure 3 which shows actual time
history data for a subject and the model fit to the data. The equation for the
model was:

altitude = (400 - a) x e-r(t-k) + a
where a is the asymptote, r is the rate of approach, t is time, and k reflects delays
in initiating the descent response. Values for these parameters were derived
based on a non-linear least squares fit to subjects' time histories for each trial
from the final experimental session (Day 3). For the trial shown in Figure 3: a =
16.61, r = .2238, and k = 8.114. This model provided very good fits for most of the
time histories.
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Figure 3. A sample of a typical time history (altitude in ft as a function of time in s) (dotted
line) with the exponential model (altitude = (400 - a) x e-r(t-k) + a) (solid line) for
approach to the surface. Values for the model parameters were (a = 16.61, r = .2238, k =
8.114).

2.1.2 Summary of Key.Results
The mean value for the rate of exponential approach to the surface was

.2348 (SD = .0412). At this rate of approach subjects would be within 3.5 ft of an
asymptotic level of approximately 25 ft from the initial altitude of 400 ft in
approximately 20 s. The rate data for the last session were analyzed using a 3 x 4
mixed design analysis of variance. An interaction between texture and forward

speed was significant (F(6,382) = 2.37, p=.029, T12 = 3.00), as shown in Figure 4.
This interaction is consistent with the signal-to-noise hypothesis. For all textures
containing depression information (grid, dot, depression) the rate of approach
was highest for the lowest flow rate and lowest for the higher flow rate. Thus,
when altitude information was difficult to pick-up due to optical noise at high
flow rates then the approaches were more cautious or conservative. The rate of
approach for splay was essentially independent of forward speed. This has
important implications for theories of optic flow. Detecting and utilizing an
optical invariant for control of locomotion is not a simple case of yes (I see it!) or
no (I don't). The pick-up of information is a graded function that depends on the
salience of the optical activity specific to the control dimension relative to the
optical activity that is not correlated with the control variable.



Perception / Action
11

0.26

0.25

cm-E0.24 -Splay
CO

-0

-0.23

"- Dotrr

0.22 Grid

Depression

0.21 I I I I
0 35 70

Speed (ft/s)

Figure 4. Significant interaction between texture type (grid, dot, depression, splay) and
flow rate (0, 35, or 75 ft/s) for the rate of approach to asymptote.

2.2 Control of Collision
The critical independent variables for the altitude control task (e.g.,

texture) reflected constraints on information or feedback in the control task. This
section considers the constraints on action. Whereas, optical structure may
specify distance to a surface, the significance of a particular distance depends
critically on the capacity for action. How low is too low? How close is too close?
The answers to these questions depend upon the maneuvering capabilities of the
vehicle. For a high performance aircraft with small time constants the boundary
between safe and unsafe margins of approaches will be different than for a
larger, more sluggish aircraft. Thus, for coordinated control it is not sufficient
that the pilot can judge distances adequately, but those distances must be judged
in terms of their implications for action. We consider this ability to see the world
in terms of the appropriate actions as a fundamental element of situation
awareness. This section will discuss recent analyses of data that were presented
in the previous AFOSR report (Flach, 1995). A more detailed report of this
research can be found in Stanard, Flach, and Smith (1996).

2.2.1 The Synthetic Task Environment
The synthetic task environment is illustrated in Figure 5. At the start of

the task the vehicle was moving toward a cliff at a particular velocity. The
subject had a discrete (button switch) control that was used to initiate ascent.
The subjects' task was to initiate ascent at the last possible moment so that the
vehicle just passed over the edge of the cliff, narrowly avoiding collision. The
two critical independent variables were the ascent dynamics and the approach
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velocity. For half the subjects (Constant Ascent Group) the climb, rate was
constant, independent of forward velocity. To do the task successfully, this
group would have to initiate ascent farther from the cliff face when moving at
high velocities than when moving at slower velocities. For the second half of
subjects (Proportional Ascent Group) the climb rate was proportional to velocity.
That is, at higher velocities the vehicle would climb at a higher rate. The
consequence of this dynamic was that the optimum position for initiating the
ascent was independent of velocity. The subject could initiate climb at a fixed
distance from the cliff independent of the forward velocity. Figure 6 shows the
boundaries set by these two dynamics. For the Constant Ascent Group the
optimal distance from the cliff increases with increasing velocity. For the
Proportional Ascent Group the optimal distance is constant.

a b • •,

a b

CONSTANT ASCENT RATE DYNAMIC

C dc d d

c&d/

PROPORTIONAL ASCENT RATE DYNAMIC

Figure 5. These diagrams illustrate the consequences of the two different
dynamic constraints. For the constant ascent rate dynamic, ascent rate is
constant. Thus, to just clear the cliff the pilot must initiate the climb farther from
the cliff when the forward velocity is greater (a) than when it is lower (b). For
the proportional ascent rate dynamic, ascent rate is proportional to forward
velocity. The result of this is that the pilot must initiate ascent at the same
position, independent of whether forward velocity is high (c) or low (d).

2.2.2 Summary of Key Results
Figure 6 shows performance for trained operators. Note that this figure

takes the form of a state space diagram. The pattern of data within this state
space (a significant interaction between dynamic and velocity) suggests that the
subjects were sensitive to the different action boundaries for the two dynamics.
The Constant Ascent Group began ascent at distances that increased with
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increasing velocity. The slope of this function was very similar to that of the
optimum boundary. The Proportional Ascent Group also began ascent at farther
distances with increased velocities. However, the slope of this function was
much shallower than for the Constant Ascent Group --- approaching the zero
slope of the optimal boundary.

9 _

06

i52

4

0 -WI-

0 1 2 3 4 5
Speed (eyeheights/s)

Figure 4. The solid line represents optimal performance for the constant ascent
rate dynamic. The dotted line represents optimal performance for the
proportional ascent rate dynamic. The filled circles show actual obtained
performance for subjects trained with the constant ascent rate dynamic. The
open circles show actual performance for subjects trained in the proportional
ascent rate dynamic.

The data show that differences in performance for the two groups were
consistent with the boundaries defined by their particular vehicle dynamics.
However, performance is not at the limits defined by those boundaries. There is
a buffer between the measured performance and the boundary and this buffer
increases with increasing speed. This is true for both conditions. What is the
significance of this buffer?

Recently, we tested the hypothesis that the buffer might reflect action
variability. Every act is affected by motor noise. Such variability can be clearly
seen in research using simple motor tasks (e.g., Fitts, 1954; Schmidt, Zelasnik,
Hawkins, Frank, & Quinn, 1979) and has been incorporated into optimal control
models of human tracking behavior (e.g. See Sheridan & Ferrell, 1974). The
amount of noise appears to scale with dynamic properties of the movement. For
example, Schmidt, et al. (1979) modeled the variability as an increasing function
of movement speed. A recent model by Flach, Guisinger, and Robison (In press)
models the variability as an increasing function of movement acceleration.
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For simple target acquisition tasks the variability is typically assumed to
be normally distributed about the intended target. However, Worringham (1991)
has recently found that when a hard constraint is placed on a target boundary
(i.e., subjects are highly penalized for crossing it) subjects appear to adjust their
aim point to avoid contact with that boundary. The subjects appear to aim in
front of the target a distance that is proportional to the movement variability. If
variability is increased (due to the speed or distance of the movement) the aim
point is adjusted accordingly. In this way, the subject avoids the penalties
associated with the hard constraint. In our experiment the cliff functions as a
hard constraint. Thus, it seems reasonable that subjects might maintain a buffer
that reflects their control variability (or response noise); so that, the noise does
not result in crashing into the hard boundary on some proportion of the trials.

To test this theory of motor variability, the size of the buffer between the
optimal state boundary and actual performance was correlated with the variance
at each point. A strong correlation was found for both conditions (R2 = .92 for the
variable ascent rate condition; and R2 = .84 for the constant ascent rate condition).
It appears as if response variability increased with speed. Further, the subjects
appear to be sensitive to this increased variability and appear to adjust their
performance accordingly. Thus, the buffer reflects a speed-accuracy trade-off
that minimizes the probability of crashing into the cliff. In optimizing
performance the subjects are sensitive to both the dynamics of the vehicle and
the variability of their perception-action system. These two aspects of
optimization have been explicitly modeled in optimal control models of the
human controller.

3.0 General Summary

How humans deal with uncertainty (noise or information) has been a
central question for theories of human information processing. The high
correlation between performance and uncertainty as measured using information
statistics was an important discovery that led to the formulation of information
processing models of human behavior. However, the information processing
paradigm has placed such emphasis on statistical variability that they have
largely ignored the specific properties of stimulation that arises from structural
and dynamic properties of environments. Optic flow is one such structural
property that information processing theories have largely ignored. More
recently, ecological approaches to human performance have focused on the
specificity of structural properties of the environment, such as optical invariants.
However, this approach tends to overlook the uncertainties and variances
associated with the pick-up of information and the execution of actions.

Optimal control theory provides a principled basis for arguing that
uncertainty and specificity are both important factors shaping the coordination
of perception and action. The research reported here provides empirical support
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for that argument. The active psychophysical perspective provides a context
within which to appreciate the contributions of both traditional information
processing approaches and ecological approaches to human performance. Basic
theories of human performance need to address both the uncertainties and the
specificities involved in the coordination problem.

An important aspect of the active psychophysical approach is the use of
synthetic environments for measuring performance. A synthetic environment is
an experimental context that simulates both the specificities and the uncertainties
found in natural settings. One advantage of the synthetic environment is that
these specificities and uncertainties can be manipulated and unconfounded
within the synthetic environment in ways that are not possible in the natural
setting. The separation of splay and depression information in the altitude study
is one example. This-permits the control necessary for rigorous hypothesis
testing. The second advantage of synthetic environments is that the structure in
the synthetic environment provides a semantic link to the natural environment
that is often lost in the nonsense tasks that have been the hallmark of traditional
behavioral research since the time of Ebbinghaus. The synthetic environment
provides a context for addressing semantic issues (meaning) related to human
performance (Flach, 1996). We hope that this approach will lead to a basic
science that has both internal and external validity.
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